(Pages	:4) COLLEGE
1	MAYEL IKARA E
-	Weis .

Reg. No.:....

Name :

Third Semester B.Sc. Degree Examination, March 2022.

First Degree Programme under CBCSS

Statistics

Complementary Course for Mathematics

ST 1331.1 – PROBABILITY DISTRIBUTIONS AND THEORY OF ESTIMATION

(2014 - 2017 Admission)

Time: 3 Hours Max. Marks: 80

SECTION - A

Answer all questions. . Each carries 1 mark.

- 1. If $X \sim N(0,1)$, then the distribution of the square of X is ______
- 3. A sample of size n was taken from a population following $N(\mu, \sigma^2)$. The standard error of the sample mean \overline{X} is ______
- 4. The moment generating function of a random variable that follows χ^2 distribution with 2 degrees of freedom is —————
- 5. If t_n is a consistent estimator of θ , then as $n \to \infty$, $V(t_n)$ tends to ______

- 6. For a normal curve, the quartile deviation (QD), mean deviation (MD) and standard deviation (SD) are in the ratio
- 7. What are the points of inflexion of the normal curve?
- 9. What do you mean by sampling distribution of a statistic?

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B

Answer any eight questions. Each carries 2 marks.

- 11. Show that for the geometric distribution, p(x+1) = qp(x).
- 12. If $X \sim N(\mu_1, \sigma_1)$ and $Y \sim N(\mu_2, \sigma_2)$, obtain the distribution of Y = aX + bY, where X and Y are independent.
- 13. X is a random variable with a continuous distribution. Find the distribution of Y = F(X) where F(x) is the distribution function of X.
- 14. Define convergence in probability.
- 15. In a town 10 accidents took place in a span of 100 days. Find the probability of 3 or more accidents in a day if it follows Poisson distribution.
- 16. State Bernoulli law of large numbers.
- 17. Derive the mean of a binomial distribution.
- 18. Differentiate between parameter and statistic.
- 19. Give any two applications of Chi square distribution.

- Show that sample mean is an unbiased estimate of the population mean when samples are taken from a normal population.
- 21. State central limit theorem.
- 22. State Neyman's condition for sufficiency.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Answer any six questions, Each carries 4 marks.

- 23. Obtain the moment generating function of Poisson distribution with parameter λ .
- 24. Prove the recurrence relation between the moments of binomial distribution

$$\mu_{r+1} = pq[nr\mu_{r-1} + \frac{d\mu_r}{dp}],$$

Where $\mu_{r-1}, \mu_r, \mu_{r+1}$ are the central moments about the parameters n and p.

- 25. If $x_1, x_2, ... x_n$ are independent random variables having exponential distribution with parameter λ , find the distribution of $Y = \sum_{i=1}^{n} X_i$.
- 26. Explain the method of maximum likelihood estimation (MLE) of parameters. Write any two properties of MLE.
- 27. Find the sufficient statistics for Gamma distribution with parameter α and β .
- 28. Show that $t = \frac{n\overline{x}}{n+1}$ is a consistent estimator of λ , where \overline{x} is the mean of samples of size n taken from a Poisson population.
- 29. Find a lower limit for the variance of any unbiased estimator of θ , where $f(x:\theta) = \theta e^{-\theta x}$, x > 0.

- 30. If E(X) = 3, $E(X^2) = 13$, use Chebychev's inequality to find a lower bound for $P\{-2 < X < 8\}$.
- 31. Explain the relation between normal, chi square, t and F distributions.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

Answer any two questions. Each carries 15 marks.

- 32. (a) Define beta distribution of first kind and second kind. Obtain their means.
 - (b) If X follows beta distribution of first kind with parameters p and q, show that $Y = \frac{X}{1-X}$ follows beta distribution of second kind.
- 33. (a) State and prove Weak law of large numbers.
 - (b) For a sequence of random variable $\{X_k\}$, given that $P(X_k = -2^k) = 2^{-(2k+1)} = P(X_k = 2^k)$, $P(X_k = 0) = 1 2^{-(2k+1)}$. Examine if the law of large numbers hold for this Sequence.
- 34. Derive 95 % confidence interval for mean from normal distribution when (1) σ is known (2) σ is unknown.
- 35. Let $x_1, x_2, ... x_n$ be a random sample from $N(\mu, \sigma^2)$ population. Find sufficient estimators for
 - (a) μ when σ^2 is known
 - (b) σ^2 when μ is known
 - (c) μ and σ^2 when both are unknown.

 $(2 \times 15 = 30 \text{ Marks})$