(Pages : 4)

Reg.	No.	*****************	******
Name			

TO MANUAL MANUAL STATE OF THE S

Third Semester B.Sc. Degree Examination, March 2022.

First Degree Programme under CBCSS

Chemistry

Core Course - II

CH 1341 - INORGANIC CHEMISTRY - II

(2020 Admission)

Time: 3 Hours

7.

Max. Marks: 80

SECTION - A

Answer all questions in a word or one or two sentences. Each question carries 1 mark

- 1. Give the electronic configuration of N₂ molecule.
- Which is more polar-HF or HI? Justify.
- Calculate the bond order of N₂⁺.
- 4. What is the hybridisation and geometry of XeOF₂ molecule?
- 5. Give any two examples for interhalogen compounds.
- 5. Draw the structure of borazole.
 - Give an example for sheet silicate.
- 3. State group displacement law.

- 9. Complete the reaction: $^{235}_{92}U + ^{1}_{0}n \rightarrow \frac{?}{}$
- 10. What are quantum dots?

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B

Answer any eight questions. Each question carries 2 marks

- 11. Differentiate between bonding and antibonding molecular orbitals.
- 12. Predict the geometry of SF₆ molecule on the basis of VSEPR theory.
- 13. What is London dispersive forces?
- 14. What is the partial ionic character of a covalent molecule?
- 15. Dipole moment of CH₃CI molecule is a zero value. Why?
- 16. What is radiation dose?
- 17. The half-life period of a radionuclide is 4.8 minutes. Calculate its decay constant.
- 18. What are synthetic elements? Give two examples.
- 19. Discuss the applications of fullerenes?
- 20. Write a method for the preparation of TiO2 nanoparticles
- 21. What are ultramarines?
- 22. Explain the formation of banana bond in diborane.
- 23. What are carbon nanotubes?
- 24. Discuss the structure of boric acid.
- 25. What are pseudohalides?
- 26. What are Maddrell's salt?

SECTION - C

Answer any six questions. Each Question carries 4 marks.

- 27. Distinguish between σ and π -bonds.
- 28. Explain Born-Haber cycle for NaCI?
- 29. Predict the structure and hybridization of CIF₃ molecule using VSEPR theory?
- 30. Write short notes on mass defects and binding energy?
- 31. Differentiate between nuclear fission and nuclear fusion. Give the applications of each.
- 32. What are clathrate compounds?
- 33. Give the classification of boranes based on its structure.
- 34. Write a note on the manufacturing of glass.
- Discuss the general properties of inorganic polymers.
- 36. Write a note on polymeric boron nitride.
- 37. Give the preparation and structures of xenon oxides.
- 38. What are top-down and bottom to top approaches in the preparations of nanomaterials.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

Answer any two questions. Each question carries 15 marks

- 39. (a) Explain sp^3d hybridisation with suitable example. (4)
 - (b) What are the salient features of MO theory? (7)
 - (c) Explain the paramagnetic nature of O₂? (4)
- 40. Briefly describe secondary bond forces and their applications.

41. Write a note on

- (a) Artificial radioactivity (4)
- (b) Applications of radioactive isotopes in medicine. (4)
- (c) ¹⁴C dating and rock dating (7)
- 42. (a) Discuss the properties and applications of silicones.
 - (b) What are refractory and covalent carbides. Explain with examples.
- 43. (a) Explain the structure of interhalogen compounds with suitable examples.
 - (b) Discuss the preparation methods for different xenon fluorides.
- 44. Discuss the properties and applications of nanoparticles.

 $(2 \times 15 = 30 \text{ Marks})$