Reg. No.	* *	******************************	
----------	-----	--------------------------------	--

Name :

Evamination, March

Third Semester B.Sc. Degree Examination, March 2022

First Degree Programme under CBCSS

Mathematics

Complementary Course for Chemistry and Polymer Chemistry

MM 1331.2 – MATHEMATICS III – VECTOR ANALYSIS AND THEORY OF EQUATIONS

(2014 & 2017 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION - I

All the first ten questions are compulsory. They carry 1 mark each.

- 1. Express the parametric equations $x = 3\cos t$, $y = 2t + \cos 2t$ as a single vector equation of the form.
- 2. Let $r(t) = t^2 i + e^t j (2\cos \pi t)k$. Then find $\lim_{t \to 0} r(t)$.
- 3. If r(t) is a differentiable vector-valued function in 2-space or 3-space and ||r(t)|| is constant for all t, then prove that $r(t) \cdot r'(t) = 0$.
- Find the arc length parametrization of the line x = 1+t, y = 3-2t, z = 4+2t that has the same direction as the given line and has reference point (1,3,4).
- 5. Describe the level surface of $f(x, y, z) = x^2 + y^2 + z^2$.
- 6. If the function $\phi(x, y, z) = xy + yz + xz$ is a potential function for the vector field F. Then find F.

- 7. Use Descartes rule of sign to show that $x^7 3x^4 + 2x^3 1 = 0$ has at least four imaginary roots.
- State the fundamental Theorem of Algebra.
- 9. Solve the equation $x^3 + 3x^2 6x 8 = 0$ given that the three roots are in geometric sequence.
- 10. Find quadratic equation with the roots $x = -2 + i\sqrt{5}$ and $x = -2 i\sqrt{5}$.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions. These questions carry 2 marks each.

- 11. Find the curvature of a circle of radius a.
- 12. A particle moves through 3-space in such a way that its velocity is $v(t) = i + tj + t^2k$. Find the coordinates of the particle at time t = 1 given that the particle is at the point (-1, 2, 4) at time t = 0.
- 13. Find r(t) given that $r'(t) = \langle 3, 2t \rangle$ and $r(1) = \langle 25 \rangle$.
- 14. If r = xi + yj + zk then prove that curl r = 0.
- 15. Prove that the vector field $3y^4z^2i + 4x^3z^3j 3x^2y^2k$ is solenoidal
- 16. Find the area of the surface extending upward from the circle $x^2 + y^2 = 1$ in the xy plane to the parabolic cylinder $z = 1 x^2$.
- 17. Find the work done by the force field F on a parabola that moves along the curve $CF(x,y) = xyi + x^3j$ where $C: x = y^2$ from (0, 0) to (1, 1)
- 18. A particle moves along a circular path in such a way that its x- and y-coordinates at time t are $x = 2 \cos t$, $y = 2 \sin t$. Find the instantaneous velocity and speed of the particle at time t and at $t = \frac{\pi}{4}$.

- 19. Solve the equation $x^3 8x^2 + 9x + 18 = 0$ given that the sum of two the roots is 5.
- 20. State the Descartes's rule of signs. Determine the number of positive and negative zeros of equation $6x^4 + 5x^3 14x^2 + x + 2 = 0$.
- 21. Solve $2x^3 + x^2 7x 6 = 0$, given that the difference between of the two roots is 3.
- 22. Use Descartes' Rule of Signs to determine possibilities for the zeros of the polynomial $f(x) = x^5 + 4x^4 2x^3 14x^2 3x 18$.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - III

Answer any six questions. These questions carry 4 marks each.

- 23. Find parametric equations of the tangent line to the circular helix $c = \cos t$, $y = \sin t$, z = t where $t = t_0$, and use that result to find parametric equations for the tangent line at the point where $t = \pi$.
- 24. Find the divergence and curl of the vector field $F(x, y, z) = x^2yi + 2y^3j + 3zk$.
- 25. Find the directional derivative of $f(x, y) = xe^y + \cos(xy)$ at the point (2, 0) in the direction of the vector i + j.
- 26. Evaluate the surface integral $\iint_{\sigma} xz \, dS$ where σ is the part of the plane x+y+z=1 that lies in the first octant.
- 27. Find the flux of the vector field F(x, y, z) = zk across the outward oriented sphere $x^2 + y^2 + z^2 = a^2$.
- 28. Suppose that a curved lamina σ with constant density $\delta(x, y, z) = \delta_0$ is the portion of the paraboloid $z = x^2 + y^2$ below the plane z = 1. Find the mass of the lamina.

3

- 30. Use the Divergence Theorem to find the outward flux of the vector field $F(x, y, z) = x^3i + y^3j + z^3k$ across the surface of the region that is enclosed by the circular cylinder $x^2 + y^2 = 9$ and the planes z = 0 and z = 2.
- 31. Describe the Newton-Raphson procedure of finding the solution of a general equation f(x) = 0.

 $(6 \times 4 = 24 \text{ Marks})$

field

SECTION - IV

Answer any two questions. These questions carry 15 marks each.

- 32. Verify the Green's theorem for the line integral $(xy dx + x^2 dy)$ where C is the curve enclosing the region bounded by the parabola $y = x^2$ and the line y = x, in counter clockwise direction.
- 33. Let $F(x, y) = e^{y}i + xe^{y}j$ denote a force field in the xy-plane.
 - (a) Verify that the force field F is conservative on the entire xy-plane.
 - (b) Find the work done by the field on a particle that moves from (1, 0) to (-1, 0)along the semicircular path C.
- 34. The graph of the vector equation $r = 2\cos ti + 3\sin tj$ ($0 \le t \le 2\pi$) is an ellipse. Find the curvature of the ellipse at the endpoints of the major and minor axes.
- 35. Show that $f(x) = x^3 + 4x^2 10 = 0$ has a root in [1, 2] and use the bisection method to determine an approximation to the root that with 10^{-6} .

 $(2 \times 15 = 30 \text{ Marks})$