(Pages: 4) Reg. No. : Name: Third Semester B.Sc. Degree Examination, March 2022 First Degree Programme under CBCSS Chemistry **Complementary Course for Botany** CH 1331.3: PHYSICAL CHEMISTRY (2019 Admission) Max. Marks: 80 Time: 3 Hours PART - A (Answer all questions. Answer in one word to maximum of two sentences. Each question carries 1 mark). The rate of a reaction ———— with increase of temperature. 1: For a first order reaction the half-life period is a -2. For a zero-order reaction the half-life period is ---- to the initial 3. concentration. Define pH of a solution. 4:

What is hydrolysis constant? How is it represented?

Define boiling point of a liquid.

5.

6.

- 7. What are auxochromes?
- 8. What is MRI?
- 9. On adding few drops of dil. HCl to freshly prepared ferric hydroxide, a red colloidal solution is obtained. The phenomenon is known as
- 10. Isotonic solutions have same ————

 $(10 \times 1 = 10 \text{ Marks})$

PART - B

(Short answer type. Answer any eight questions from the following. Each question carries 2 marks).

- 11. Define zero order reaction.
- 12. Define order and molecularity of reaction.
- 13. What is the expression for pH of solution containing weak acid and its salt?
- 14. Define a catalyst. Give one example.
- 15. What are the classifications of partially miscible liquids?
- 16. What are azeotropes? Give one example.
- 17. What are Chromophores? Give one example.
- 18. Which isotope of carbon will give NMR spectrum? Why?
- 19. What is Raoults's law?
- 20. What is Hardy-Schulz rule?
- 21. Explain the gold number of a colloid.
- 22. Lyophilic colloids are more stable than Lyophobic colloids. Why?

- What is meant by non ideal solution? Give one example.
- 14. What are different type of catalysis?
- 25. Define osmotic pressure?

red

26. What is zeta potential in colloids?

 $(8 \times 2 = 16 \text{ Marks})$

PART - C

(Short answer type. Answer any six questions from the following. Each question carries 4 marks).

- 27. Derive the expression for the kinetics of first order reactions.
- 28. Explain the calculation of Arrhenius parameters of a chemical reaction.
- 29. A first order reaction is 50% complete in 100 minutes. How long will it take for 90% completion?
- Calculate the pH of buffer solution obtained by mixing 6.0 g of acetic acid and 12.30 g. of sodium acetate and making the volume of solution to 500 mal. (Ka for acetic acid is 1.8*10⁻⁵).
- 31. Explain the temperature-composition diagram of non-ideal solutions.
- 32. Explain the different types of electronic transitions in molecules.
- 33. Explain the origin of chemical shift in NMR spectroscopy.
- 34. What is Vant-Hoffs factor? What is its importance?
- 35. Explain the electrical properties of colloids.
- 36. How UV-Visible spectroscopy is used to identify geometrical isomers.
- 37. Explain the principle of fractional distillation.
- 38. Which compound is used as standard in NMR? Why?

 $(6 \times 4 = 24 \text{ Marks})$

PART - D

(Answer any two questions. Each question carries 15 marks).

- 39. (a) Explain the different types of catalysis with one example for each of them.
 - (b) Explain the different concepts of explaining the acids and bases.
- 40. (a) Explain the intermediate compound formation theory and adsorption theory of catalysis.
 - (b) Explain the various factors influencing the rate of a reaction.
- 41. Explain how colligative properties are used in determining the molecular mass of non-volatile solutes?
- 42. Explain the chemical shift and spin-spin coupling in NMR spectroscopy. Also explain the NMR spectrum of pure ethanol.
- 43. (a) Derive the expression for kinetics of first order reaction.
 - (b) Explain the different methods of preparation and properties of colloids.
- 44. (a) Explain the vapour pressure- composition curve for non-ideal solutions.
 - (b) Discuss the different types of shifts in the absorption maximum of UV-Visible spectra.

 $(2 \times 15 = 30 \text{ Marks})$