20

(Pages: 4)

ONE COLL	
MAVELIKARA - N PIN. 690110 00 KERALA - N	- 4630
* 13	

Reg. No. :

Fourth Semester B.Sc. Degree Examination, February 2022

First Degree Programme under CBCSS

Chemistry

Complementary Course for Botany
CH 1431.3 ORGANIC CHEMISTRY

(2019 Admission)

Special Examination

Time: 3 Hours Max. Marks: 80

SECTION - A

(Answer all questions in one word to maximum two sentences. Each question carries 1 mark)

- Example for a carrier gas used in gas chromatography is
- 2. Give example for a nonpolar solvent in chromatography.
- 3. Give example for an achiral α -amino acid.
- 4. Represent the structure of D-glyceraldehydes.
- The heteroatom present in alkaloid is —
- 6. The valuable byproduct of saponification is —
- Give example for a mordant dye.

8.	The wavelength corresponding to Indigo in spectrum is	nm.
9.	is an example of a broad spectrum antibiotic.	
		la India

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B

(Short answer type. Answer any eight questions. Each question carries 2 marks)

11. What are the advantages of gas chromatography?

The compound acetaminophen is generally called -

- 12. How can we predict the polarity of compounds from Rf value in TLC?
- 13. Briefly explain the sheehan method for the preparation of peptides.
- 14. How isoelectric point is used in the separation of individual amino acids?
- 15. Why proteins are denatured?

10.

- Draw the structure of enantiomers of lactic acid.
- 17. Describe the term enantiomeric excess.
- 18. Differentiate between acid value and iodine value.
- 19. Give the general structure of oils and fats.
- 20. Citral is an isoprenoid. Justify
- 21. Give the structure of vitamins A and C.
- 22. Draw the structure of malachite green.
- 23. How can we extract Indigo from natural source?

- 24. Explain the necessary qualities for a compound to act as dye.
- 25. Describe the use of hypnotics.
- 26. Write note on anticancer compounds from plants.

(8 x 2 = 16 Marks)

SECTION - C

(Short essay type. Answer any six questions. Each question carries 4 marks)

- 27. Differentiate between adsorption and partition chromatography.
- 28. Describe the principle and application of ion exchange chromatography.
- 29. Explain the classification of amino acids.
- 30. Explain a colour reaction for the identification of amino acids.
- 31. Describe the processes in transcription and translation.
- 32. Illustrate the structure of erythrose and throse.
- 33. Describe one method for the separation of racemic acids.
- 34. Write a note on vitamin deficiency diseases.
- 35. Explain the process of isolation of geraniol.
- 36. Describe method for preparation of phenolphthalein and schiffs reagent.
- 37. Briefly classify dyes based on structure.
- 38. Briefly explain a method for synthesis of aspirin.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

(Answer any two questions. Each question carries 15 marks)

- 39. (a) Briefly explain the stereochemistry of tartaric acid;
 - (b) Assign R and S for each of the chiral carbons in stereoisomers of tartaric acid. [10+5]
- 40. Briefly explain the structure of proteins.
- 41. Write note on,
 - (a) Methods in planar chromatography
 - (b) Capillary electrophoresis

[8 + 7]

- 42. (a) Describe a method for extraction of alkaloids;
 - (b) Draw the structure of coniine and nicotine.

[10 + 5]

- 43. Describe different theories for the appearance of colour in compounds.
- 44. Write note on,
 - (a) sulphadrugs
 - (b) Antacids
 - (c) antimalarials.

 $(2 \times 15 = 30 \text{ Marks})$