Reg.	No.	·	****

Name:

Fourth Semester B.Sc. Degree Examination, February 2022 First Degree Programme Under CBCSS

Mathematics

Complementary Course for Chemistry /Polymer Chemistry

MM 1431.2 — MATHEMATICS IV – DIFFERENTIAL EQUATIONS, VECTOR CALCULUS AND ABSTRACT ALGEBRA

(2019 Admission)

Special Examination

Time: 3 Hours Max. Marks: 80

- L. All the first 10 questions are compulsory. Each carries 1 mark.
- 1. Solve $\frac{\partial y}{\partial x} + 2y = 0$
- Write the standard form of linear first order differential equation.
- Check whether ydx + xdy is exact or not.
- 4. True / False: y_1 and y_2 are independent implies $W(y_1, y_2) = 0$.
- 5. Find the gradient of f(x,y) = x 2y.
- State Green's theorem in a plane.
- Define Conservative field.
- True/False: Every cyclic group is Abelian.

- 9. State Lagrange's theorem.
- Define characters of a representation of a group.

 $(10 \times 1 = 10 \text{ Marks})$

- Answer any eight questions from among the questions 11 to 26. Each carries 2 marks.
- 11. Find the order and degree of the differential equation $\frac{d^2y}{dx^3} + x\left(\frac{dy}{dx}\right)^{\frac{3}{2}} = 0$
- 12. Solve $\frac{dy}{dx} = x + xy$.
- 13. Find the general solution of $y = px + p^2$.
- 14. Find the complementary function of $\frac{d^2y}{dx^2} 2\frac{dy}{dx} 3y = 4e^x$.
- 15. Write the standard form of Legendre's linear equation and Euler linear equation.
- 16. Solve $\frac{d^2y}{dx^2} 5\frac{dy}{dx} + 4 = 0$.
- 17. Find div F, where for $F = 2xyi + 2yx^2j$.
- 18. Write the integral form for grad, div and curl.
- 19. Evaluate the line integral $I = \int_C 3x^2 2y + z$, where C is the line segment joining (0,0,0) and (2,2,2).
- 20. Find an expression for the angular momentum of a solid body rotating with angular velocity ω about an axis through the origin
- 21. Draw the group table for the set {1,-1,i,-i} under ordinary multiplication of
- 22. Define representation of a group G with an example.
- 23. Define a group.
- 24. Define an equivalence relation.

- 25. State Division Axiom in group theory.
- 26. Define the index of H in G.

 $(8 \times 2 = 16 \text{ Marks})$

- III. Answer any six questions from among the questions 27 to 38. Each carries 4 marks.
- $27. \quad \text{Solve } x \frac{dy}{dx} + 3x + y = 0$
- 28. Solve $\frac{dy}{dx} + 2xy = 4x$.
- 29. Find the general solution of the equation $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = e^x$.
- 30. Solve $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} 4y = 0$.
- 31. Calculate $\nabla \times F$ for $F = 2xzi + 2yz^2j + (x^2 + 2y^2z 1)k$.
- 32. Find the volume enclosed between a sphere of radius a centered in the origin and a circular cone of half angle α with its vertices at the origin.
- 33. Using Green's theorem, find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 34. Evaluate the line integral $I = \oint_C x dy$, where C is the circle in the xy-plane defined by $x^2 + y^2 = a^2$, z = 0.
- 35. Prove that the identity element in a group is unique.
- 36. Show that the integer (mod 10) under addition is a group.
- 37. Prove that two cosets are either disjoint or identical.
- 38. If n_{μ} is the dimension of the μ^{th} irrep of a group G, then prove that $\sum_{\mu} n_{\mu}^{2} = g$, where g is the order of G.

 $(6 \times 4 = 24 \text{ Marks})$

- IV. Answer any two questions from among the questions 39 to 44. Each carries 15 marks.
- 39. (a) Solve $\frac{dy}{dx} = \frac{-1}{2yx} \left(y^2 + \frac{2}{x} \right)$
 - (b) Solve $\frac{dy}{dx} + \frac{y}{x} = 2x^3y^4$
- 40. (a) Solve $\frac{d^2y}{dx^2} + y = \cos ecx$.
 - (b) Using the variation of parameters method to solve $\frac{d^2y}{dx^2} + y = \cos ecx$ subject to the boundary conditions $y(0) = y\left(\frac{\pi}{2}\right) = 0$.
- 41. Evaluate the line integral $I = \int_{C} \mathbf{a} . d\mathbf{r}$, where $\mathbf{a} = (x + y) \mathbf{i} + (y x) \mathbf{j}$, along each of the paths in the xy plane, namely
 - (a) the parabola $y^2 = x$ from (1,1) to (4,2)
 - (b) the curvex = $2u^2 + u + 1$, $y = 1 + u^2$, from (1,1) to (4,2).
 - (c) the liney = 1 from (1,1) to (4,1) followed by the linex = 4 from (4,1) to (4,2).
 - Show that $Q = (3x^2(y+z) + y^3 + z^3) \mathbf{i} + (3y^2(z+x) + z^3 + x^3) \mathbf{j} + (3z^2(x+y) + x^3 + y^3) \mathbf{k}$ is a conservative field. Find its potential function. Evaluate $\int_{(1,-1,1)}^{(2,1,2)} Q.dr$.
- 43. Explain the elements of a group of two dimensional operations which transform an equilateral triangle into itself, by drawing a sequence of model triangles. Draw the group table.
- 4. Determine the irreps contained in the representation of the group 3 m in the vector space spanned by the function x^2 , y^2 , xy.

 $(2 \times 15 = 30 \text{ Marks})$